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A nickel(II) thiolate complex incorporating threeN-donor types (amino,
amido, and imidazole) has been synthesized and characterized. The
(N3S)Ni complex, [N-{2-[(2-mercapto-2-methylpropyl)amino]ethyl}-
1-methylimidazole-2-carboxamido]nickel(II) (1), is stable in the pre-
sence of O2 but readily forms the sulfinato (RSO2

-) derivative 2 upon
the addition of H2O2. Electrochemical investigations of 1 reveal an
irreversible sulfur-based oxidation at þ0.17 V vs Fcþ/Fc (200 mV/s)
that shifts to þ0.81 V upon oxidation to 2. Density functional theory
investigations of 1 reveal a highest occupied molecular orbital that is
predominantly sulfur-based, consistent with the observed sulfur-based
oxidation and O2 stability.

Catalytic disproportionation of superoxide to O2 and
H2O2 is a critical process catalyzed by one of several super-
oxide dismutase (SOD) metalloenzymes.1 While most SODs
employ N/O donor sets, an N/S core is found in NiSOD.2-6

Reduced NiSOD (NiSODred) contains a square-planar
nickel(II) coordinated by two thiolates (Cys-6/Cys-2), a
carboxamido nitrogen (Cys-2), and the terminal amine of
His-1 (Figure 1).4 Oxidized NiSOD (NiSODox) additionally
binds the imidazole of His-1,5,6 which may remain bound

during catalytic turnover.7,8 Although nickel thiolates are
well-known to reactwithO2andH2O2, yielding sulfur-oxygenated
derivatives,9-13 no evidence of sulfur oxygenation has been
observed in NiSOD.9-13 It has been suggested by us and others
that protonation and/or N-H 3 3 3S hydrogen bonding may
suppress sulfur oxygenation.4,14-16 Herein we report the synthesis
and characterization of a (N3S)Ni complex (1) and its sulfinato
derivative (2). Complex 1 is similar to a series of diamino (N3S)Ni
complexes recently reportedbyDarensbourg and co-workerswith
two notable distinctions.17 First, 1 contains an amido donor in
place of the secondamine. Second, the chelate structure of 1 forces
the in-plane imidazole parallel with the N3S-donor plane, in
contrast to a perpendicular or fluxional orientation in the com-
plexes reported by Darensbourg et al. Although these complexes
do not reproduce the axial histidine coordination of NiSODox,
they, nonetheless, offer insight into the reactivity of nickel-contain-
ing biomolecules.
The N3S ligand, N-{2-[(2-mercapto-2-methylpropyl)ami-

no]ethyl}-1-methylimidazole-2-carboxamide is readily pre-
pared from isobutylene sulfide and N-(2-aminoethyl)-1-
methylimidazole-2-carboxamide by the modification of
known methods.18-21 The addition of Ni(acac)2 yields 1 as
a red solid. The electronic spectrum of 1 (Figure S1 in the
Supporting Information) displays bands at 356, 425, and 565
nm inacetonitrile and 367, 445(sh), and 573nm inan aqueous
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solution. These features reproduce those observed in
NiSODred (342, 361, 450, 488, 542, and 584 nm) and the
maquette NiSODM1 (337, 458, and 552 nm).7,22

Solutions of 1 are stable to O2 (1 atm) in water, methanol,
and acetonitrilewith nodetectable changes in theUV-visible
spectrum or voltammogram after 2 weeks. This is consistent
with the reported stability of NiSODred and in stark contrast
to that of NiSODM1, which decomposes within hours upon
air exposure.7 While 1 is O2-tolerant, it reacts with H2O2 to
yield the sulfinato derivative 2 (Scheme 1). The absorption
bands of 2 (acetonitrile) are blue-shifted relative to 1 with a
maximum at 315 nm and a shoulder near 400 nm (Figure S2
in the Supporting Information). The lower-energy band
characteristic of 1 is notably absent. The IR spectrum of
2 displays intense bands at 1171 and 1042 cm-1 assigned as
the symmetric and asymmetric SdO stretching frequencies
of the sulfinato moiety (Figure S3 in the Supporting
Information).9-12

Functional SOD mimics require a reversible redox couple
between -0.3 and þ0.9 V vs the normal hydrogen electrode
(NHE).23,24 In acetonitrile, 1 is oxidized atþ0.17VvsFcþ/Fc
(þ0.86 V vs NHE).25 The oxidation lies near the anodic limit
for SODmimics and is irreversible. Because protonation and/
or N-H 3 3 3S hydrogen bonding may be important at the
NiSOD active site, voltammograms of 1 were also recorded
in buffered aqueous solutions. The oxidation potential re-
mains near the functional limit with values of þ0.76, þ0.80,
and þ0.85 V (vs NHE) at pHs of 9.1, 7.0, and 5.0, respec-
tively, but with no change in reversibility. Previously, Dar-
ensbourg et al. reported that sulfur modification, including
oxygenation and alkylation of nickel thiolates, can impart
redox reversibility, albeit with a large anodic potential shift.26

While 2 displays shifted potentials of þ0.81 and -2.08 V in
acetonitrile vs Fcþ/Fc as expected, the events remain irrever-

sible. Further, the potentials of 2 clearly lie outside the
SOD functional limits, consistent with a deactivating role
when/if sulfur oxygenation were to occur in NiSOD. As
expected, p-nitro blue tetrazolium chloride SOD activity
assays27,28 for 1 and 2 were negative.
Density functional theory (DFT) calculations on 1 were

performed for comparison with our prior study on (N2S2)Ni
complexes.14 In that study, sulfur-based O2 sensitivity was
suggested to result from activation of the Ni/S-dominated
highest occupied molecular orbital (HOMO) with maximum
effects when the S:Ni ratio is near 1:1.Higher S:Ni ratioswere
observed for O2-tolerant complexes that required stronger
oxidants or electrochemical oxidation for sulfur-based reac-
tivity. The HOMO of 1 (Figure 2) consists of a Ni d/S pπ*
interaction with 49% S pz and 23%Ni dxz/yz character and a
total S:Ni ratio of 2.25:1. The orbital percentages are similar
to those of our theoretical amido-amino (N2S2)Ni dithiolate
(Ni d/S1 p/S2 p = 21%/15%/51%),14 an O2-stable ami-
do-amino derivative synthesized and computationally eval-
uated by Shearer (Nitotal/Stotal = 33%/50%),29 and the
tethered imidazole (N3S)Ni complex of Darensbourg et al.
(Ni d/S p=17%/57%).17Also consistent with its O2 stability,
amapof themolecular electrostatic potential calculated from
Mulliken atomic charges (Figure S4 in the Supporting
Information) for 1 reveals a sulfur potential similar to that
of our theoretical amido-amino (N2S2)Ni dithiolate.
X-ray crystallographic analyses of 1 and 2 reveal NiII ions

in slightly distorted N3S square-planar environments with
three distinct N-donor types (Figure 3).30 The Ni-N bond
distances in 1 are 1.893(3), 1.869(3), and 1.904(3) Å to the
imidazole (N1), carboxamido (N3), and amino (N4) N
atoms, respectively. The Ni-N bond distances in 2 are
similar, with values of 1.877(3), 1.860(3), and 1.890(3) Å
for N1, N3, and N4. The Ni-S bond distance decreases
slightly from 2.1810(11) Å in 1 to 2.1119(10) Å, consistent
with oxygenation effects observed in related nickel complexes.

Figure 1. Representation of the active site of NiSODred.

Scheme 1. Sulfur Oxygenation of 1 to 2

Figure 2. Isosurface plot (isovalue = 0.04) of the HOMO of 1.
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TheNi-N/S bond distances of 1 and 2 are similar to those of
NiSODred.

5,6

In conclusion, complex 1 incorporates NiII in a planar,
dianionic N3S chelate with three N-donor types (amino,
amido, and imidazole) and a single thiolate. Like the
[(N3S)Ni]þ complexes reported by Darensbourg et al., 1
contains an in-plane imidazole, in contrast to the axial

histidine of NiSODox.
17 Recent spectroscopic and theo-

retical studies by Fiedler et al. concluded that axial
histidine ligation promotes reversible metal-based oxida-
tion.22 Our spectroscopic and computational results con-
firm that in-plane imidazole supports sulfur-based oxida-
tion similar to diamino and amido-amino (N2S2)Ni com-
plexes.14,29,31 As reported previously, the nucleophilicity
of the sulfur is optimized by raising the energy of the
HOMO as indicated by a S:Ni ratio close to unity, leading
to complexes that are O2-sensitive.

14,32 Complexes with
higher S:Ni ratios, such as 1, tend to be resistant to O2

oxidation, although they display irreversible sulfur-based
oxidations electrochemically and sulfur oxygenation
upon the addition of strong oxidants including H2O2.

14,29

This is consistent with the protection of nickel thiolates,
including 1 and NiSOD, from O2 via “kinetic control”.17,32

Whether this protection extends to H2O2 oxidation remains
unresolved.
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Figure 3. (top) ORTEP representation of 1. Selected bond lengths [Å]
and angles [deg]: Ni1-N1 1.893(3), Ni1-N3 1.869(3), Ni1-N4 1.904(3),
Ni1-S1 2.1810(11); N1-Ni1-S1 100.47(9), N1-Ni1-N3 83.77(12),
N3-Ni1-N4 85.32(12), N4-Ni1-S1 90.57(9). (bottom) ORTEP rep-
resentation of 2. Selected bond lengths [Å] and angles [deg]: Ni1-N1
1.877(3), Ni1-N3 1.860(3), Ni1-N4 1.890(3), Ni1-S1 2.1119(10),
S1-O2 1.486(3), S1-O3 1.460(3); N1-Ni1-S1 101.53(9), N1-Ni1-N3
84.34(13), N3-Ni1-N4 85.30(13), N4-Ni1-S1 88.68(9).
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